$52 \$ 12$

1. A manufacturer produces sweets of length $L \mathrm{~mm}$ where L has a continuous uniform distribution with range $[15,30]$.
(a) Find the probability that a randomly selected sweet has a length greater than 24 mm .

These sweets are randomly packed in bags of 20 sweets.
(b) Find the probability that a randomly selected bag will contain at least 8 sweets with length greater than 24 mm .
(c) Find the probability that 2 randomly selected bags will both contain at least 8 sweets with length greater than 24 mm .
a) L~4 $[15,30) \quad P(x>24)=\frac{6}{15}=0.4$

b) $x \sim B\left(20, \frac{6}{15}\right) \quad P(x \geqslant 8)=1-P(x \leqslant 7)=0.5841$
b) $0.5841^{2}=\frac{0.341}{2}$
2. A test statistic has a distribution $B(25, p)$.

Given that

$$
\mathrm{H}_{0}: p=0.5 \quad \mathrm{H}_{1}: p \neq 0.5
$$

(a) find the critical region for the test statistic such that the probability in each tail is as close as possible to 2.5%.
(b) State the probability of incorrectly rejecting H_{0} using this critical region.

$$
\begin{array}{cc}
P(x \leqslant L) \cong 0.025 & P(x \geqslant H) \cong 0.025^{(2)} \\
P(x \leqslant 7)=0.0216 & P(x>H-1) \approx 0.025 \\
P(x \leqslant 8)=0.0539 & 1-P(x \leqslant H-1) \cong 0.025 \\
\therefore & \therefore L=7 \\
C R(x \leqslant H-1) \approx 0.975 \\
C R\{x \leqslant 7\} \cup\{x \geqslant 18\} & P(x \leqslant 17)=0.9784 \\
\therefore H-1=17 \therefore H \leqslant 18
\end{array}
$$

b) $A S L=0.026+0.0216=0.0432$
4.32% chance q incorrectly rejecting
3. (a) Write down two conditions needed to approximate the binomial distribution by the Poisson distribution.

A machine which manufactures bolts is known to produce 3% defective bolts. The machine breaks down and a new machine is installed. A random sample of 200 bolts is taken from those produced by the new machine and 12 bolts were defective.
(b) Using a suitable approximation, test at the 5% level of significance whether or not the proportion of defective bolts is higher with the new machine than with the old machine. State your hypotheses clearly.

3a) large n, small $p \approx n p \leq 10$ $x \sim B(200,0.03) \quad n p=6 \approx x \sim p_{0}(6)$
$H_{0}: \lambda=6 \quad P(x>12) \quad P(x>11)=1-P(x \leq 11)$
$H_{1}: \lambda>6 \quad=0.0201<0.05$
\therefore there is enough evidence to igect null hypothesis since result is significant
\therefore evidence to suggest the proportion of faulty bolts han mareased.
\qquad
4. The number of houses sold by an estate agent follows a Poisson distribution, with a mean of 2 per week.
(a) Find the probability that in the next 4 weeks the estate agent sells,
(i) exactly 3 houses,
(ii) more than 5 houses.

The estate agent monitors sales in periods of 4 weeks.
(b) Find the probability that in the next twelve of these 4 week periods there are exactly nine periods in which more than 5 houses are sold.

The estate agent will receive a bonus if he sells more than 25 houses in the next 10 weeks.
(c) Use a suitable approximation to estimate the probability that the estate agent receives a bonus.
a) $x \sim P_{0}(8) P(x=3)=\frac{e^{-8} \times 8^{3}}{3!}=\frac{0.0286^{(6)}}{2}$
ii) $P(x>5)=1-P(x \leqslant 5)=\frac{0.8088}{2}$
b) $y^{\sim} B(12,0.8088)$

$$
P(y=9)\binom{12}{9} 0.8088^{9} 0.1912^{3}=0.2277
$$

c) $t \sim P_{0}(20) \mu=20 \sigma^{2}=20 \approx N(20,20)$

$$
\begin{aligned}
& P(t>25) c c P(t>25.5) \simeq P\left(2>\frac{25.5-20}{\sqrt{20}}\right) \\
& P(t \geqslant 26) \\
& \simeq P(2>1.23)=1-Q(1.23)=0.1093
\end{aligned}
$$

6. A bag contains a large number of balls.
65% are numbered 1
7. The queueing time, X minutes, of a customer at a till of a supermarket has probability density function

$$
\mathrm{f}(x)=\left\{\begin{array}{cc}
\frac{3}{32} x(k-x) & 0 \leqslant x \leqslant k \\
0 & \text { otherwise }
\end{array}\right.
$$

(a) Show that the value of k is 4
(b) Write down the value of $\mathrm{E}(X)$.
(c) Calculate $\operatorname{Var}(X)$.
(d) Find the probability that a randomly chosen customer's queueing time will differ from the mean by at least half a minute.
a) $\int f(x) d x=1 \Rightarrow \frac{3}{32} \int_{0}^{k} u x-x^{2} d x=\frac{3}{32}\left[\frac{u x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{k}$

$$
=\frac{3}{32}\left(\frac{1}{6} u^{3}\right)=1 \Rightarrow k^{3}=64 \quad \therefore \frac{k=4}{2}
$$

b) $E(x)=\int_{0}^{4} x f(x) d x=\frac{3}{32} \int_{0}^{4} 4 x^{2}-x^{3} d x$

$$
=\frac{3}{32}\left[\frac{4}{3} x^{3}-\frac{1}{4} x^{4}\right]_{0}^{4}=\frac{3}{32}\left(\frac{64}{3}\right)=2 .
$$

c)

$$
\begin{aligned}
& \epsilon\left(x^{2}\right)=\int_{0}^{4} x^{2} f(x) d x=\frac{3}{32} \int_{0}^{4} 4 x^{3}-x^{4} d x \\
& =\frac{3}{32}\left[x^{4}-\frac{1}{5} x^{5}\right]_{0}^{4}=\frac{3}{32}\left(\frac{256}{5}\right)=\frac{24}{5} \\
& V(x)=\epsilon\left(x^{2}\right)-\epsilon(x)^{2}=\frac{24}{5}-4=\frac{4}{5}
\end{aligned}
$$

d) $P(1-5<x<2-5)$

$$
=\frac{3}{32} \int_{1.5}^{2.5} 4 x-x^{2} d x=\frac{3}{32}\left[2 x^{2}-\frac{x^{3}}{3}\right)_{1-5}^{2.5}=\frac{0.633}{2}
$$

35% are numbered 2
A random sample of 3 balls is taken from the bag.
Find the sampling distribution for the range of the numbers on the 3 selected balls.

$$
\begin{gathered}
\text { range }=0 \quad 1,1,1 \quad P=0.65^{3} \\
2,2,2 \quad P=0.35^{3} \\
\therefore P(\text { range }=0)=0.3175
\end{gathered}
$$

\therefore range | \therefore | 1 | |
| :---: | :---: | :---: |
| P | 0.3175 | 0.682 S |

$$
\mathrm{f}(x)=\left\{\begin{array}{cc}
\frac{x^{2}}{45} & 0 \leqslant x \leqslant 3 \\
\frac{1}{5} & 3<x<4 \\
\frac{1}{3}-\frac{x}{30} & 4 \leqslant x \leqslant 10 \\
0 & \text { otherwise }
\end{array}\right.
$$

(a) Sketch $\mathrm{f}(x)$ for $0 \leqslant x \leqslant 10$
(b) Find the cumulative distribution function $\mathrm{F}(x)$ for all values of x.
(c) Find $\mathrm{P}(X \leqslant 8)$.

$0 \leqslant x \leqslant 3 \quad f(x)=\int_{0}^{4} \frac{t^{2}}{45} d t=\left[\frac{t^{3}}{135}\right]_{0}^{x}=\frac{x^{3}}{135}$ $3<x<4 \quad F(x)=\int_{3}^{x} \frac{1}{5} d t+F(3)=\left[\frac{1}{5} t\right]_{3}^{x}+\frac{27}{135}=\frac{1}{5} x-\frac{2}{5}$ $4 \leqslant x \leqslant 10 \quad F(x)=\int_{4}^{x} \frac{1}{3}-\frac{t}{30} d t+F(4)=\left[\frac{1}{3} t-\frac{t^{2}}{60}\right]_{4}^{x}+\frac{2}{5}$

$$
=-\frac{x^{2}}{60}+\frac{1}{3} x-\frac{2}{3}
$$

$F(x)= \begin{cases}0 & x<0 \\ \frac{x^{3}}{135} & 0 \leqslant x \leqslant 3 \\ \frac{1}{5} x-\frac{2}{5} & 3<x<4 \\ -\frac{x^{2}}{60}+\frac{1}{3} x-\frac{2}{3} & 4 \leqslant x \leqslant 10 \\ 1 & x>10\end{cases}$
c) $F(8)=$
$\frac{-8^{2}}{60}+\frac{1}{3}(8)-\frac{2}{3}$
$=\frac{14}{15}$
8. In a large restaurant an average of 3 out of every 5 customers ask for water with their meal.

A random sample of 10 customers is selected.
(a) Find the probability that
(i) exactly 6 ask for water with their meal,
(ii) less than 9 ask for water with their meal.

A second random sample of 50 customers is selected.
(b) Find the smallest value of n such that

$$
\mathrm{P}(X<n) \geqslant 0.9
$$

where the random variable X represents the number of these customers who ask for water.
a) $x=$ customer ashen for water $x \sim B(10,0.6)$ $y=$ Customer does nor ash for water
$y \sim B(10,0.4)$
i) $P(x=6) \Rightarrow P(y=4)=\binom{10}{4} 0.4^{4} 0.6^{6}=0.251$
ii) $P(0<9)=P(x \leq 8) \Rightarrow P(y \geqslant 2) P(y>1)$ $=1-P(y \leqslant 1)=0.9536$
b) $P(x<n)=P(y>50-n) \geqslant 0.9 \quad x \sim B(50,0.6)$

$$
\begin{aligned}
& \Rightarrow 1-P(y \leqslant 50-n) \geqslant 0.9 \quad y \sim B(50,0.4) \\
& \Rightarrow P(y \leq 50-n) \leqslant 0.1
\end{aligned}
$$

$P(y \leq 15)=0.0955<0.10$ $P(y \leqslant 16)=0.1561>0.10$

$$
\therefore 50-n=15 \quad \therefore n=35
$$

